

Transition to Hydrogen with NGV Technology

Natural Gas Vehicle Technology Forum

August 2-4, 2005

Alan Welch

Westport's Gaseous Technology

- Cummins-Westport and Westport have evolved gaseous fuel technology for several natural gas engines.
- Base NG technology:
 - ► Low pressure fuel: Otto-cycle /single point mixing in intake manifold for spark-ignited engines.
 - ► Higher pressure fuel: diesel-like / late-cycle direct injection with ignition assist
 - Diesel pilot
 - Hot surface ignition
 - Spark ignition (future option)
- NGV Technology can definitely be used for Hydrogen Internal Combustion Engines (H₂-

Key Hydrogen Properties / Behavior in Engines

Hydrogen Properties

- ▶ Low ignition energy (1/10 of that for gasoline).
- ▶ High flame speed (9 times that of gasoline).
- Very broad flammability range (allowing unique potential for emission control).
- Lower volumetric energy density/high speed of sound

Hydrogen Engine Characteristics:

- ► Tendency to pre-ignite during compression.
- Very fast burning rates.
- Very low temperature combustion possible.
- Fuel injection system requires ~20% larger flow area as compared to CNG
- ► For external mixing of fuel: Theoretical loss of up to 30% air flow due to volumetric displacement by H₂ in intake manifold/cylinder.

Rationale for H2 ICE Technology

Engine technology roadmap

- Internal combustion engines (ICE) are very well developed and increasingly sophisticated.
- There is a pipeline of efficiency improving technologies that can still be used.
- Adapting high efficiency ICE's to hydrogen/natural gas mixtures or to hydrogen would result in very cost effective power plants for near to medium term.
- ICE development would be part of a long term H₂ roadmap:

Westport and CWI Primary Markets/Partners

CNG - Transit Bus

LNG - Heavy Duty Truck

CNG - Power Generation

Westport

CNG - Medium-Duty Truck

ISUZU

Hydrogen Research

Low Pressure Technology Applications

Otto Cycle (Spark-Ignited)

HCNG: SunLine Transit Demonstration

- CWI 230HP, 5.9L spark-ignited lean-burn B Gas Plus natural gas engine modified to operate on an optimized HCNG fuel blend
 - 20 vol% H₂ / 80 vol% CNG
 - 230 hp / 500 lb-ft (replicates base engine)
- Transient emissions testing of the four buses
 - ▶ NOx & nMHC reduced by ~50%.
- Energy consumption unchanged. CO2 reduced by 7%.
- Duration: 2002 2004
 - ▶ 65,000 vehicle-miles in field trials for 2 HCNG buses
- Funding: NREL (U.S. DOE), South Coast AQMD

HCNG: 4 Buses in Vancouver (2005-2008)

- Upgrade/calibrate CWI 280HP 8.3L C Gas Plus engines for HCNG.
- Hydrogen for HCNG via capture and purification of waste hydrogen (sodium chlorate plant).
- Potential to be showcased as part of the B.C. Hydrogen Highway Initiative.
- IWHUP (Integrated Waste Hydrogen Utilization Project) is an \$18,000,000 initiative to harness recycled waste hydrogen
- Industry/Canadian Government Partners:
 - Sacré-Davey Engineering
 - Westport Innovations
 - •BC Hydro/Powertech Labs
 - Clean Energy
 - Dynetek Industries
 - Nuvera Fuel Cells

- QuestAir Technologies,
- ERCO Worldwide
- Natural Resources Canada CTFCA
- Sustainable Development Tech.
 Canada (SDTC)
- •Industry Canada TPC H2 Early Adopters

High Pressure Technology Applications

Direct Injection Approach (with Assisted Ignition)

100% Hydrogen: Internal Combustion Engines

Options:

- Low pressure port-injection (generally limited by preignition)
- High pressure direct injection (diesel-like benefits)
- Strong interest from Ford* and BMW* in direct injection due to:
 - Eliminates hydrogen backflash or pre-ignition
 - Allows high CR> 14
 - High efficiency
 - High power density
 - Low emissions potential (with proper control).
 - near term opportunities for ICE's to support hydrogen economy and compliments fuel cell efforts.

H2 Direct Injection - High Torque /Power Potential

Direct Injection Technology

High Pressure Direct Injection (HPDI)

NG + Pilot Diesel **Injectors**

INTAKE

POWER

EXHAUST

Direct Injection Efficiency Advantage (CNG Data)

H2 Direct Injection - Emissions

- At vehicle, green house gases (CO₂) are essentially eliminated
- Hydrocarbons and carbon monoxide are virtually zero.

 Oxides of nitrogen (NOx) can be controlled to ultra-low levels using very lean strategy, EGR and if necessary, NOx traps/aftertreatment.

Figure 14. NO, concentration vs Φ

Figure 15. Log NO_ν concentration vs Φ

Summary Benefits of H2 Direct Injection

- H₂ DI eliminates pre-ignition
- High Torque (BMEP) and Power
- High Efficiency (Diesel-like)
- Low NOx potential (with proper control)
- Virtually zero HC, CO and CO₂

Conclusions

- CNG based technology can be definitely leveraged to effectively use hydrogen in ICE's.
- HCNG technology has allowed us to put early stage hydrogen technology on the road.
- Early H2-ICE DI work shows significant technical benefits / potential and will likely be the best path forward.
- Advanced hydrogen DI technology can provide excellent hydrogen ICE performance and emission characteristics.
- Close collaboration between industry and government is essential to move technology forward.

